Further design features include the addition of modified nucleic acids during transcription. mRNA can cause immunogenicity when delivered to a cell exogenously. However, the incorporation of naturally occurring, chemically modified nucleosides like pseudouridine and 1-methylpseudouridine prevents activation of the innate immune system. Nucleoside-modified mRNA is also translated more efficiently by ribosome than unmodified mRNA.17
Newer developments and applications in biopharma incorporate a growing range of RNA constructs18, including self-amplifying RNAs (saRNAs)19, circular RNAs and RNAs bearing an internal ribosomal entry site or IRES.20
The first step into the usage of the “novel” saRNA technology was already taken in 1981 when the first cloning of an infective full-length genome of an animal RNA virus was accomplished21. Containing a viral replicon from positive-strand RNA viruses (like picornaviruses or flaviviruses22) synthetic saRNAs are able to self-amplify within host cells23. Synthetic saRNA has therefore the potential to induce higher levels of protein production and immunogenicity relative to the injected dose compared to conventional mRNA constructs24. Synthetic saRNA can be prepared by in vitro transcription25 (as conventional mRNA constructs) but are usually larger (9–12 kb) than non-amplifying mRNAs26. Today the usage of self-amplifying RNA is a promising technology in various therapeutic applications and vaccines27.